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TRANSFORM DOMAIN ADAPTIVE FILTERING USING A RECURSIVE DFT*

G. A, Clark

University of California
Lawrence Livermore National
P.0. Box 808, L-156
Livermore, CA 94550

ABSTRACT

This paper discusses the use of a recursive
DFT (discrete Fourier transform) with frequency-
domain adaptive filters, We show that, even
though the recursive DFT ordinarily has stability
problems when implemented in finite precision
arithmetic, it is stable when used with an
appropriate numerical roundoff procedure, making
it practical for use with frequency-sampling type
adaptive filters.

INTRODUCTION

The activity in frequency-domain adaptive
filtering research has produced several algorithms
in recent years (see the references in [1,2]).
Most of them use the DFT to process the data in
blocks (rather than one sample at a time), and
perform fast convolutions/correlations. On the
other hand, the frequency sampling-type adaptive
filters (FSAFs) process the data one sample at-a-
time, using the DFT not for fast convolution
purposes, hut to provide an orthogonal
transformation that allows for rapid convergence
of the filter weights when appropriate gradient
step size parameters are employed [3-6]. The
disadvantage of the FSAFs is that they require
more computational complexity than the LMS
adaptive filter and all of the block-type filters.

The purpose of this paper is to discuss the
use of the recursive DFT [7,8] with the FSAFs.
The advantages of the recursive OFT are that it
produces a new set of Fourier coefficients at
every time sample, it preserves the convergence
speed benefits of orthogonal transformation, and
it requires less computational complexity than the
fast Fourier transform (FFT). The disadvantage is
that the recursive DFT ordinarily has stability
problems when implemented using finite precision
arithmetic [7,8]. We show, however, that if an
appropriate roundoff procedure is used, the
recursive DFT is stable, making it practical for
use with FSAFs.

Lab

M. A, Soderstrand

T. G. Johnson

Signal and Image Processing Laboratory
University of California

Department of ECE

Davis, CA 95616

FREQUENCY -SAMPLING ADAPTIVE FILTERS

The basic frequency sampling adaptive filter
of interest here is the one described in [3-6] and
depicted in Fig. 1. Most of the authors use an
FFT to implement the orthogonal transform, but [3]
appears to use a recursive DFT, without addressing
the effects of finite precision arithmetic. The
filter equations are summarized as follows:

The complex-valued input signal x(n) is passed
through a delay line and a DFT to form the vector

1)

R T

_S_n = lSO(n)s Sl(n)- ’ SN-l(n)]

where n is the discrete time index, N is the
number of filter weights, and superscript "T"
represents matrix transposition. The complex-

valued filter weight vector is:

_ T
Wo = Wgln), wp(n), e Wy ()] (2)
The autput yin) is given by
T T
yln) =w s =s_w {3)
The complex weight adjustment algorithm is
Hosl T o * A sy e(n) (@)

where superscript "*" denotes complex conjugation,
a s a positive convergence constant, d(n) is the
desired response, e(n) = d(n) - y(n), and A is an
NxN d4iagonal matrix, the elements of which are
given hy:

fn =

a‘(\

T - (5)

°s,k‘”)

The time-varying input power estimates ;E k(n) are
]
computed recursively by:

;E,k(”+1) = Sai,k(") + (1-8) s, (n) sg(n) (6)

where 0 < g < 1 is the so-called smoothing
constant.

*Work performed under the auspices of the U.S, Department of Energy by the Lawrence Livermore National

Laboratory under contract number W-7405-ENG-48.
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Relationships among the various frequency-domain
filters

It was shown in [2] that the block adaptive
filter provides a general framework, of which all
of the frequency domain adaptive filters are
special cases. Particularly interesting is the
recent result of [9], showing that the FSAF of
[4,5] is a special case of the block adaptive
filter when the block length L=l. Since the LMS
filter of Widrow [1,2] is equal to the block LMS
filter when L=1, the FSAF should be equivalent to
the LMS filter when a constant convergence factor
is used.

THE RECURSIVE DFT

The Fourier coefficients in Eq. (1) can be
written as follows:

N-1 -Jj ik
sk(n) = | x{n-i)e L .
i=0
k = 0,1,...,N-1 (7
where k is the discrete frequency index. Note
that an entire N-point DOFT is computed at each
time instant in sliding window fashion. One can

derive the following recursion far this DFT [10]:

. 2w
-‘]N-k
Sk(n-l) + x{n) = x(n=N) (8)
It can be shown that Eq. (8) yields the frequency
sampling filter structure [4-6] depicted in
Fig. 1.

The recursive DFT implements poles on the
unit circle, which are used to cancel the zeros of

the comb filter I - z-N. With infinite precision

arithmetic, the poles on the unit circle cause no
stability problems, but with finite precision, the
poles can easily be located outside the unit
circle, due to quantization effects. This problem
is typically handled by sampling the system
transfer function on a circle of radius r, where r
is very slightly less than unity (typically

r=1- 2'26) [7,8]. This approach is mentioned

in [3]. In this case, Eq. (8) becomes:
. 2m
-] k
s =re N s )+ x(n) - e x(aen) (9)

Unfortunately, the use of r can cause the
recursive DFT to decay with time, giving
unsatisfactory spectrum estimates. In the next
section, we show that a stable recursive OFT can
be found (without the use of r) by using a simple
roundoff scheme.

NUMERICAL STABILITY OF THE RECURSIVE DFT

Hardware implementations of the recursive DFT
have two main problems: (1) they cannot implement
poles exactly on the unit circle, so errors
accumulate over time, and (2) they cannot
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implement zeros which exactly cancel the poles.
In floating-point hardware, the source of these
problems is primarily the adders, and in fixed
point hardware, the problem source is the
multipliers,

Floating-Point Implementation

Here, scaling is necessary before addition to
aqualize the exponents of the numbers to be
added. This means that one number gets truncated
or rounded to a word size consistent with the
other. This can cause pole and zero locations to
be moved away from the unit circle, Consider the
zero frequency term {k = 0) of the recursive DFT:

so(n) = sg(n-l) + x(n) - x(n-N) (10)

sp{n) should always equal the sum of the last N

inputs x(n) through x{n-N+1). To work properly,
x{n=N) must exactly remove the x(n) added N
samples previously. The error occurs because the
floating-point processor scales x(n) and x(n-N)
differently, due to the varying nature of

sg(n-1). To correct for this, we have devised the

follawing algorithm that forces x(n) and x(n-N) to
be scaled the same:

sn(O) = sn_l(O) + [x(n) + c] - [x{n-N} + c) (11)
where ¢ is a positive constant chosen such that
x(n) and x(n-N) are consistently rounded to the
same number of significant digits, A general
discussion of these issues is omitted for brevity,
but it is important to note that floating point
realizations are susceptible to finite precision
difficulties.

Fixed-Point Implementation

Here, the additions are exact as long as the
inputs are scaled to prevent overflow, so only the
multipliers cause problems. For analysis
purposes, we assume the following: (1) all
additions are exact (with zero error), (2) all
data are represented by b-bit two's complement
arithmetic, and (3) the products sp(n) wg(n) are

computed by ROM table lookup and the result is
rounded to b bits (see Fig. 2).

Under these assumptions, the rounding
algorithm becomes the only source of problems
because it determines whether or not the poles lie
on the unit circle. If simple truncation is used,
the effective pole locations are inside the unit
cirele, causing long-term decay in the spectrum
estimates. Our goal is to develop a rounding
algorithm that will effectively locate the poles
on the ynit circle, With the hardware of Fig. 2,
we find that simple two's complement rounding
accomplishes this goal., It locates the poles
sometimes inside and sometimes outside the unit
circle, ensuring that signal components at the
pole freguency do not experience long-term decay
or growth, To illustrate this, we simulated the
hardware of Fig. 2 using both truncation and
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rounding. We let x(n) = 100 §(n), where &§(n) is
the unit sample. If we let F (n) denote the exact

(infinite precision) value of the kth coefficient
of the N-point DFT at time n, the error is:

Ec(n) = [F(n)| - |s (n)]

The error accumulation is demonstrated in Fig. 3a
for the truncation case, and Fig, 3b for the
rounding case. Note that rounding produces small,
bounded, stable errors.

(12)

COMPUTATIONAL COMPLEXITY

The most significant advantage of the
recursive DFT is its associated computational
complexity savings and hardware simplifications.
As an example, we designed hardware
implementations of a fast Fourier transform (FFT)
and the recursive DFT. We used B-bit words, 256x8
ROMs for the multiplication, and standard 8-bit
adders. A summary of the hardware requirements is
given in Table I, showing that the recursive DFT
offers considerable hardware savings.

Furthermore, if one processing unit is multiplexed
to obtain the N Fourier coefficients, the
recursive DFT operates faster than the FFT,
even though we can trade hardware complexity
against speed for either circuit, the recursive
DFT is always more efficient than the DFT.

Thus,

Table 1. Hardware computational complexity for
the FFT and recursive DFT.

Number of Adders Number of ROMs

FFT Rec. DFT  FFT  Rec. DFT
N (5N/2)logoN 4N+l 2NlogpN AN
8 60 33 48 32
16 160 65 128 64
32 400 129 320 128
64 960 257 768 256

128 2240 513 1792 512

256 5120 1025 4096 1024

512 11520 2049 9216 2048

1024 25600 4097 20480 4096

CONCLUSTONS

“We have shown that the recursive DFT provides
computational savings, and can achieve stable
spectrum estimates for fixed-point implementations
when appropriate rounding is applied. Our current
work involves applying the recursive DFT to
frequency sampling adaptive filters.
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fig. 1. The frequency-sampling adaptive filter
using the recursive OFT.
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Fig. 2. A fixed-point hardware implementation of
the kth resonator of the recursive DFT structure.
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Fig. 3a. The error E {n) In the first (k=1)

recursive DFT coefficient, for standard two's
complement arithmetic with truncation. Note that
the error grows with time and saturates at 100,
the value of the spectral component at k=1,
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Fig. 3b. The error Ek(n) in the first (k=1)

recursive DFT coefficient, for standard two's

complement arithmetic with rounding. Note that
the error is small, bouhded, and stable.
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